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A subclass of general octagonal distances defined by neighbourhood sequences
[2] have been characterized here which have a strikingly simple closed functional
form. These are called simple distances. Minimization of the average absolute
(normalized) and average relative errors of these simple distances with regard to the
euclidean norm have been carried out to identify the best approximate digital distan
ces in 2-D digital geometry. The direct errors have also been analyzed and the effect
of finite domain sizes on the approximation has been highlighted. It is shown that
the neighbourhood sequences {2}, {I, 2}, p, 1,2}, and p, 1, 2, 1,2} have special
significance in distance measurement in digital geometry. © 1992 Academic Press. Inc.

1. INTRODUCTION

Integral approximations of the true euclidean distance e in the digital
plane have long been attempted, particularly for the purpose of digital pic
ture processing. Though pictures seemingly exist in the continuous domain,
their fast processing using a computer has often been envisaged in the
quantized space in which digital computers operate. In particular, a num
ber of distance propagation and transformation algorithms have been
worked out which necessarily operate with integer values. Thus the perti
nent question which has obtained frequent attention is the issue of close
approximation of the true euclidean norm using integer valued metrics. The
first obvious choices were e2

, Lej, round(e)=Le+O.5j, and re1, where
L. j and r·1 are floor and ceiling functions [3], respectively. Though all
these four are integer valued, the first three of them fail to satisfy the metric
properties [4]. The fourth approximation r e1 is a metric and provides a
workable solution, but unfortunately it has received little attention,
possibly due to its limitation in the definitions of suitable point
neighbourhoods and minimal paths. Consequently most of the research
efforts in digital distance approximation have been diverted to the search
of proper digital distances and the class of octagonal distances [2] have
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emerged as a viable solution in the digital plane. In this paper we have
analyzed the octagonal distances from the point of view of approximation
and identified a few very simple integer metrics which can be widely used
for the above tasks. Most importantly we prove that in the framework of
octagonal distances we can hardly expect to achieve a better approxima
tion.

The octagonal distance for digital pictures was introduced in digital
geometry by pfaltz and Rosenfeld in [4] when they proved that an alter
nating use of cityblock and chessboard motions defines a new integer
valued metric which can approximate the true euclidean norm better, than
the conventional cityblock or chessboard distances. Recently Das and
Chatterji [2] have extended their definition to allow for arbitrarily long
cyclic seque:J.ces of cityblock and chessboard motions called neighbourhood
sequences. This general definition has been shown to be "octagonal" still,
since it always corresponds to constant radius "disks" which are digital
octagons (see Fig. I(a, b)). Detailed analysis of such octagons with respect
to the area and perimeter errors for a euclidean circle shows that in every
such neighbourhood sequence the actual order in which the two motions
are arranged is of little consequence in an asymptotic sense so long as the
length of the sequence and the number of cityblock/chessboard motions
remain constant. This fact is reflected in the characteristic value [2] of
every sequence which is invariant under the reordering of motions. A
general closed form expression for such distances has also been derived in
[2] and it is proved that a neighbourhood sequence defines a metric in the
topological sense if and only if the sequence is well-behaved.

Unfortunately the functional form of the class of octagonal distances is
mathematically fairly complex and involves a long chain of integer func
tions (floor operations) in the computation. In practical use this functional
complexity not only leads to unnecessary programming difficulty but at the
same time hinders the physical understanding of the properties of the
metric. So the simplification of the distance function needed special atten
tion for effective usage. We show in this paper that out of the class of
neighbourhood sequences which have the same characteristic value (and
hence identical error behaviour) there exists exactly one metric which has
a strikingly simple functional form (involving only one ceiling function)
and incidentally satisfies the metricity conditions too. So after a revision
of the available results on octagonal distances in Section 2, we derive
a characterization for such simple octagonal distances in Section 3. In
Section 4 we introduce new error analyses involving these simple metrics.
In these analyses the error between the octagonal and the true euclidean
distances has been estimated in the asymptotic order by using a continuous
(and hence asymptotic) approximation of the octagonal metric. Finally we
have attempted to minimize the maxima of the absolute (normalized) dif-
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ference, the relative difference, the average absolute (normalized) difference,
and the average relative difference through the selection of the proper
characteristic value and the corresponding neighbourhood distance.
Interestingly most of the errors minimize for some special metrics. We have
analyzed these in detail and recommended, in Section 5, four different
simple metrics for practical use in digital approximation.

2. OCTAGONAL DISTANCES-A REVISION

For the sake of completeness we highlight in this section the relevant
results on octagonal distances from [2].

Rosenfeld and pfaltz [4] identified two types of motions in the two
dimensional digital plane Z2, where Z is the set of integers. The first type
of motion (cityblock motion) restricts movements to the horizontal or ver
tical directions, while the second kind (chessboard motion) also allows
diagonal movements. The length of the shortest path between any two
points restricted by a particular type of motion defines a distance function
between two points. Thus the two types of motions in two dimensions
determine two distances, cityblock distance and chessboard distance.

Cityblock movement as such involves a unit change in at most one coor
dinate at every step, whereas chessboard motion allows a unit change in
both coordinates. The first kind of motion will be said to involve type
I-neighbours, while the latter will use type 2-neighbours. Any distance
which is obtained by combining these two motions is determined by a
Neighbourhood Sequence (N-sequence, for short) which defines the type of
motion to be used at every step. Here a distance function between any two
points (Ul> u2 ) and (VI> v2 ) using the N-sequence B= {b(I), b(2), ..., b(p)}
(where b(i) is a particular type of neighbourhood, 1<b(i) <2, and p = IBI
is the length of the sequence beyond which B repeats itself) is denoted by
d«u l , U2), (VI, V2); B) or deB) for short. For example, the octagonal dis
tance dOel [4] is defined by an N-sequence B = {l, 2} which corresponds to
a cycle of neighbourhood relationships {I, 2, 1,2, ... }. Any N-sequence B
defines a unique distance function d( B). However, any distance function
may be associated with an infinite number of N-sequences; e.g., B = {I},
{I, l}, {I, I, l}, ... all define the same cityblock distance.

The functional form of the octagonal distance is given in the following
theorem.

THEOREM 1 [Theorem 3.1 of [2]]. Let Xl and X2 be the lengths of the
sides of a digital rectangle. The minimal length of the diagonal d«x I> x 2); B)
of the rectangle as determined by B is d«X I,X2);B)=max(x l ,x2,

640/68/2-4
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L:J~Il((XI+xz)+g(j))jf(p)J), where f(i)=L:J=lb(j), l~i~p, and
f(O)=O, g(i)=f(p)-f(i-l)-I, l~i~p.

Clearly the distance between two arbitrary points (UI, uz) and (VI' vz) in
the digital plane becomes d((uI' uz), (VI' vz); B) = d( (lUI - VII, Iuz - vzl); B).

Unfortunately not all B's define metric (positive definite, symmetric, and
triangular) d(B)'s. The following theorem states the necessary and sufficient
condition for metric d( R)'s.

THEOREM 2 [Theorem 4.1 of [2J]. d(B) is a metric if and only if B is
well-behaved, that is,

f(i) +f(j) ~f(i+ j)

~ f(p )+f(i + j - p)

i+j~p

i +j~ p.

Finally, these distances are octagonal in the sense that for every
integral radius the corresponding disk H(r, B)= {(XI' x z) I (XI' Xz)EZ Z

,

d((xl>xz);B)~r}, r~O is a digital octagon having vertices at (±r,±h(r))
and (±h(r), ±r), where h(r) is a function of Band r as given in the next
lemma. For example, we illustrate the first quadrants of H(6, {l, 2}) and
H(6, {I, 1,2,1, 2}) in Fig. l(a, b).

LEMMA 1 [Lemma 6.2 of [2J]. For any Band r, the corner function
h(r) is h(r) = LrjpJ(f(p) - p) + f(r mod p) - (r mod p).

Note that in Fig. l(a), for B= {I, 2}, h(6)=L6j2J(3-2)+f(0)-0=3
and corners occur at (6,3) and (3,6). Similarly for B= {I, 1,2,1, 2},
h(6) = 2 in Fig. l(b).
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FIG. 1. First quadrants of digital octagons: (a) Octagon of B= {I, 2} for radius r = 6.
Note that h(6)=3 and corners occur at (6,3) and (3,6). (b) Octagon of B= {I, 1,2, 1,2} for
radius r = 6. Note that h(6) = 2 and corners occur at (6, 2) and (2, 6).
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Interestingly the asymptotic relative size of h(r) with respect to r tends
to a constant defined by the B:

Lim h(r)/r=f(p)/p-l =mB-l =h(p).

This constant m B= f(p )/p is termed the neighbourhood parameter. It is
invariant under the reordering of the elements of B and plays an important
role in the approximate analysis. Conceptually m B is the average
neighbourhood value in the expansion of every minimal path determined
by this B. In fact the asymptotic values of the area and perimeter errors of
the disks are functions solely of m B [2]. Note that mB is related to the
characteristic value Ll B of a B as defined in [2] via the relation m B =
Ll B +1.

3. SIMPLE OCTAGONAL DISTANCES

We find from Theorem 1 that the summation part of the distance func
tion is a fairly complex integer function. For example if B = {I, 1,2,2}
then the sum is l(a + 1)/6 j + l(a + 3)/6 j + l(a + 4)/6 j + l(a + 5)/6 j, for
a=x l +x2 ; whereas for B={1,2}, it is l(a+l)/3j+l(a+2)/3j=
i2a/3l. Hence there is enough reason to expect that for some B's the sum
turns out to be a single ceiling function [3, p. 37]. Such distances are
obviously easy to handle and efficient to perform computations with. So we
call them simple distances. In the following theorem we show that for every
p = IBI and f(p), p ~f(p) ~ 2p there exists a unique B which defines a
simple d(B).

THEOREM 3. d((x 1, X2); B) is simple, i.e., of the form max(x l , x 2 '

i(x l +x2 )/ml), iff b(i)=Lif{p)/pj-L(i-l)f{p)/pj, l~i~p, where
1 < m < 2, m = f{p )/p, f{p) and p are relatively prime, x I' X 2 E Z, and
XI' X2 ~ O. In addition, for m = 1, B = {1} and d{(xl> x 2 ); B) = Xl + X 2 and
for m = 2, B = {2} and d{(x l , X2); B) = max(x 1 , x 2 ) are also simple.

Proof First express B in terms of f(i),s and g(i)'s, 1~ i ~ p, as

i

f{i)= L b(j) = Lif{p)/pj,
j=l

1~i~p

g{i) = f{p) - f(i -1) -1 = f(p) -iU -1)f{p)/pl,

=f(p)-I, i=1.

2~i~p-l
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Now, d«x1,xz);B)=max(xl,xz, L;~Il(xI+xz)+g(i»/f(p)J).Hence
we need to show that the above g(i) satisfies the integer equation

p

L: l(a + g(i) )/f(p)J = I pa/f(pn
;= I

aEZ, a~O.

Let a=rf(p)+s, O~s~f(p)-I,r~O. So we need to prove that

p

L: L(s + g(i»/f(p)J = I ps/f(pn
;=1

o~ s ~f(p)-1.

Now clearly f(i) > f(j), i > j, and g(i) < g(j), i > j. Moreover

1~f(i)- f(i-l)~2,

1~ g( i ) - g( i + 1) ~ 2,

Consider two cases now.

2 ~ i~ p,

1~ i ~ p - 1 and g(1) = f(p) - 1.

Case 1. 3j, 1~j ~ p such that s = f(p) - g(j). So LHS = L;= 1 L(f(p)
g(j) + g(i)/f(p)J = j = RHS provided 1(f(P) - g(j» p/f(pn = j or
Lg(j) p/f(p)J = p - j.

Case 2. 3j, l~j~p, such that s=f(p)-g(j)+I=f(p)-g(j+l)-1.
So in this case we require to prove that

L(g(j) - 1) p/f(p)J = p - j, where g(j) = g(j + 1) + 2.

It may be noted that either of the above two cases must occur. Now we
prove that Lg(j) p/f(p)J = p - j given that

g(j) = f(p) -I(j-l) f(p)/pl·

Substituting the expression for g(j),

Lg(j) p/f(p)J = p -IIU -1) f(p)/pl(p/f(p»l.

So we have to establish that

11(j-l)xl/xl=j for 1<x<2

1(j-l)xl=I(j-l)x+ Il-1 =Ijx-(x-ln-l

~rJxl-l

<jx
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and f(j-l)x1::>-(j-l)x. So f(j-I)x1/x<j:(;f(j-I)x1/x+1. Hence
fr (j - l)xl/x1= j and Lg(j) p/f(p)J = p - j = RHS. Next we prove that
L(g(j) - 1) p/f(p)J = p - j if g(j) = g(j + 1) + 2. We have

LHS = l(g(j + I) + 1) pjf(p)J = l(f(p) - rjf(p)jp1 + I) plf(p)J

= p - r(r jf(p )jp1- 1) pjf(p)l = p - j

provided r(rJf(p )jp1- 1) plf(p)l = j, i.e., r(rJx1- 1)jx1= j, I < x < 2.
Also

rJx1 <jx+ I and rJx1-1 = LJxj = L(j-1)x+ (x-I)J + 1

::>-L(j-l)xj+l

> (j-l)x.

So (rJxl-1)jx <j:(; (r jx1-1)jx + 1. Hence f(r jx1-I)jx1 = j and
L(g(j) - 1) pjf(p)J = p - j = RHS. Finally note that m = 1 and m = 2 are
also special cases of the general form. Q.E.D.

For example, let p=S and f(p) = 7. So b(1)=L7jSj-O=1, b(2)=
L14jSj-L7jSj=2-1 = 1, b(3)=L21jSj-LI4jSj=4-2=2, b(4)=
b(S)=l, and B={l,1,2,1,2} is simple with d«X 1,x2 );B)=
max(xj> X2, rS(x j +x2)j71)·

The d(B)'s in the above form are referred to as "simple" d(B)'s corre
sponding to "simple" N-sequences. It is interesting to note that given p and
f(p) there are p!j(f(p)-p)!(2p-f(p))!=(f(!J_p)d(B)'s out of which
only one is simple.

Simple d(B)'s not only give simple, easy to handle analytical distance
functions, but at the same time they help to avoid the metricity test.

LEMMA 2. If B is simple then d(B) is a metric.

Proof From Theorem 2 we know that deB) is a metric if and only if B
is well-behaved. So here we prove that every simple B is well-behaved.
From Theorem 3, f(i) = Lif(p)jpJ, 1~ i~ p. So

f(i) + f(j) = Lif(p )jp j + LJf(p )jpJ

:(;L(i+j)f(p)jpj, since Lxj+Lyj:(;Lx+yj

:(;f(i + j).
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f(i) + f(j)::::; L(i + }) f(p )/pJ

::::;L(i+}- p)f(p)/pJ+ f(p),

::::; f(p) + f(i +} - p).

p::::;i+ }<2p

Hence if B is simple then B is well-behaved and thus d(B) is a metric.
The metricity of a simple d(B) can also be proved from the functional form
of d(B) using the fact that 1::::; m B ::::; 2 and Ixl + I yl ~ I x + yl. Q.E.D.

The disks of a simple d(B) are also easy to compute.

LEMMA 3. For a simple B, h(r) = LrmBJ - r, r~ O.

Proof From Lemma 1, h(r)=Lr/pJ(f(p)-p)+f(rmodp)-(rmodp).
Let r=sp+t, O::::;t::::;p-l. So h(r)=s(f(p)-p)+f(t)-t=sf(p)+
f(t) - r = sf(p) + Lif(p)/pJ - r = Lrf(p)/pJ - r = LrmBJ - r. Note that
h(r) = LrmBJ - r also holds for t = 0 of f(p) = p or 2p. Hence the result.

Q.E.D.

For example, if mB =7/5 then h(6)=L42/5J-6=2 as shown in
Fig. l(b).

4. DIRECT AND AVERAGE ERROR ESTIMATIONS

The estimation of the direct/average absolute or relative difference
between a simple d(B) and the true euclidean distance e is rather difficult
to carry out in general. However, frequently, we are interested in the
asymptotic values of these quantities. Actually for wide applicability in
domains (subsets of Z2) of any size, it is often preferable that we choose
a d(B) which minimizes the asymptotic errors. So for this purpose of error
analysis we approximate every simple d(B) by distance dm in the real
domain where m = f(p)/p. Clearly dm: R2

X R2-+ R+ and dm((xl> X2)) =
max(lxll, Ix2 1, (Ixll + Ix2 1)/m) approaches d(B) for sufficiently large values
of Xl and x 2 , where Rand R+ are sets of real and positive real numbers,
respectively.

In this section we analyze four kinds of errors for a d(B): two absolute
and two relative. Since absolute error turns out to be a function of the
domain size (say M x M) over which the computation is carried out we
normalize it to get proper bounded error functions. So for m B= m = f(p )/p
the following four error estimates are used for approximation.

Direct Absolute (Normalized) Error:

a(m)= max {le((x l ,x2))-dm((XI,x 2 ))1}/M,M>O.
O:E:;Xl.X2~M
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Direct Relative Error:

u(m) = max {Ie( (x 1, X2)) - dm((x j> X2))Ije( (x l' X2))}
O~Xl,X2~M

max {ll-dm ((xj>x2 ))je((x 1 ,x2 ))I}.
O~Xl, X2~ M

Average Absolute (Normalized) Error:

Average Relative Error:
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The expressions for these errors in terms of the neighbourhood
parameter m have been derived in the next four theorems using the
following lemma:

LEMMA 4. The following definite integrals are true:

(i) It(r, s) = fM fsx
,
)(xi + x~) dX2dXt

o rXt

= (s)(1 +S2) - r)(1 + r2))

+ In((s +)(1 + s2))J(r +)(1 + r2)))) M 3j6.

(ii) 12(r,s)=f
M

rX'XtdX2dxt=(s-r)M3j3.
o rXt

(iii) 13(r,s)= fM r
XI

X 2 dX2dxt = (S2_ r2)M 3j6.
o rXI

(iv) 14(r,s)= fM r
XI

dX2dX t = (s-r)M 2j2.
o rXI

fM fSx, ) 2 2
(v) 15(r,s)= xtj (x t +x2)dx2dx t

o rXt

= In((s +)(1 + s2))j(r +)(1 + r2))) M 2j2.

(vi) h(r,s)= fM r
X1
x2j)(xi+x~)dx2dxl

o rXl

= ()(1 +S2) -)(1 + r2)) M 2j2.
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Proof Follows from the following indefinite integrals:

and

Q.E.D.

THEOREM 4.

a(m)= max {Ie((XI,X2))-dm((XI,X2))I}/M
O~XI,X2~M

= max(J(1 + (m - 1)2) - 1, 12/m - J21),

where M>° and 1:( m :( 2.

Proof Clearly,

max le((x l , x 2))-dm((x l , x2))I/M
O~Xl.X2~M

= max { max IJ(xi+x~)-max(xl' (Xl +x2)/m)I/M}
o~ Xl ~ M 0 :E; X2 :::;; xl

= max Xl { max IJ(l +x2)-max(l, (1 +x)/m)I/M}
0:::;; Xl :::;; M 0 ~ x:::;; 1

x = X2/XI

= max fA(X) where fA(X) = IJ(l + x 2) - max(l, (1 + x)/m)l.
O~x~l

Now

fA (x) = J (l + x 2
) - 1, °:( X :( m - 1

= IJ(l + x 2) - (1 + x)/ml, m - 1:( x:( 1.

Now let g(x) = J(1 + x 2) - (1 + x)/m. Therefore dg/dx = x/J(1 + x 2)_
l/m=O, i.e., x=I/J(m2-1) and d2g/dx2= 1/(1 +X)3/2>0. Hence g(x)
has a minimum at X = I/J(m2- 1). Since I/J(m2- 1):( 1 for J2:( m::::;; 2,
g(x) is decreasing in the interval [0, I/J(m2- 1)] and increasing in the
interval [1/J(m2-1),I] for J2:(m:(2. Also g(x= I/J(m2-1))=
(J(m2-1)-I)/m~0for J2:(m::::;;2. So the maximum of Ig(x)1 in the
interval [m - 1, 1] occurs at either extreme point X = m - 1 or X = 1. Now
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if 1< m < J2, 1/J(m2-1) > 1. Consequently, g(x) is monotonically
decreasing in the interval [0,1]. So the maximum of Ig(x)1 in [m-1, 1]
again occurs at either x = m - 1 or at x = 1. Finally for m = 1, g(O) = 0 and
g(x)<O for x>O with dgldx<O. Again Ig(x)1 maximizes at x= 1.
Combining all cases we get

max Ig(x)1 = max(J(1 + (m - 1)2) -1, 121m - J21).
m-l~x~l

Since J(l + x 2
) - 1 is an increasing function, we get

max fA(x)=max(J(1+(m-1)2)-1, max Ig(x)I).
O~x~l m-l~x~l

That is, a(m) = max(J(l + (m - 1)2) - 1, 121m - J21). Q.E.D.

So the maximum of the normalized absolute error a(m) minimizes at
mopt , the solution of the equation

J(1 + (m -1 )2) -1 = 121m - J21.

We have solved the equations numerically (graphically in Fig. 2) to get two
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~
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m_

FIG. 2. Variation of direct absolute (normalized) error Q:(m) with m. Note the solutions of
)1 + (m _1)2 -I = 121m - fil for minimum Q:(m).
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solutions, m = 1.3555 or 1.6076. Hence mopt = 1.3555 and mInImUm
absolute error lX(m opt ) = min{lX(m) 1 l:>;;m:>;; 2} =0.0613 = 6.13%.

THEOREM 5.

a(m)= max {11-dm((x l ,x2))/e((x I ,x2))I}
O::E;Xl, x2~M

=max(1-1/)(1 + (m-l)2), 11-)2/ml),

where M> 0 and 1 :>;; m :>;; 2.

Proof First show that a(m) = maxo'" x '" I fR(X), where

fR(X) = 1-1/)(1 +x2), O:>;;x:>;;m-l

=ll-(I+x)/m)(I+x2 )1, m-l:>;;x:>;;1.

Proceeding as in the previous theorem the result immediately follows.
Q.E.D.

In the case of relative error mopt is the solution of

1-1/)(1 + (m _1)2)= 11- )2/ml.

That is, m = 1.3420 or 2.0. Hence mopt = 1.3420 and mInImUm relative
error = a(mopt ) = min{a(m) 11 :>;;m:>;;2} =0.0538=5.38% (see Fig. 3).
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FIG. 3. Variation of direct relative error u(m) with m. Note the solutions of
I-l/Jl + (m-l)2= 11-J2/ml.
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A(m) = (1/3)((2 - J2) -In(J2 + 1) - (m2- 2 + 4t(m) + 4t2(m))/m

+ 2t(m) J(l + t2(m)) + 2In(t(m) + J(1 + t2(m))), 1~ m ~ J2

= (1/3)((2 + J2) +In(J2 + 1) - (m2+ 4)/m), J2 ~m ~ 2,

where t(m) = (1 - m J(2 - m2))/(m2-1).

Proof To evaluate A(m) we first derive the expression of the integral
J~ J~l le( (x I' x 2)) - dm((x I' x 2 ))1 dX2dx I' Consider two cases.

Case 1. O~x2~(m-1)xI' Therefore

dm((xj, x 2)) = XI ~ J(xi + x~)

~e((xI' X2))'

So we get, using Lemma 4,

Case 2. (m-1)xI~x2~xI' Clearly dm((XI,X2))=(X I +X2)/m. Now
two cases occur depending on whether dm((XI,X2))~e((XI,X2)) or
~e((xj, X2))' Hence

Subcase 1. 1~ m ~ )2. Now

m2(e2((xj, x2)) -d~((xI' x 2)))

= (m 2 -1) xi-2xIX2 + (m 2 -1) x~

= (x2- t(m) X I )(X2 - (l/t(m)) xI)(m2-1) ~O

implies either X2 ~ (l/t(m)) XI or X2 ~ t(m) Xj, where t(m) =
(1-m)(2-m2))/(m2-1). Again as X2~XI and t(m)~l, X2~
(l/t(m)) XI is not feasible. It is also easy to show that m - 1~ t(m) ~ 1.
Thus,

if (m - 1) XI ~ X2 ~ t(m ) XI

if t(m)xI~x2~XI'
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Hence we get, using Lemma 4,

P. P. DAS

=II(m-I, t(m»-II(t(m), 1)

+ U2(t(m), I)-I2(m-I, t(m»

+ I 3(t(m), 1) - I 3(m - 1, t(m» )Im.

Subcase 2. j2 :c m :c 2. Now

m2(e2((x j , x2»-d~((Xl' X2»)

= (m 2 -I) xi -2XI X2+ (m2-I) x~ ~ (XI -X2)2 ~o.

Hence,

Combining both cases and substituting 11 ,12 ,13 from Lemma 4 the result
follows. Q.E.D.

To estimate the minima of the normalized average absolute error we
have plotted A(m) in Fig. 4. Solving numerically we get that A(m) mini
mizes for m = oo1סס1.4 with the minimum error 0.015950 ~ 1.6%. Also note
that A(I) =0.234804, A(j2) = 0.017649, and A(2) =0.098529.

In the next theorem we estimate the average relative error R(m).

THEOREM 7.

R(m) = (2t(m) -1) - (I-11m) In(m -1 + j(1 + (m -1 )2»

+ j(I + (m -1 )2)/m + (1Im)(j2 + In(J2 + 1»

- (21m )(In(t(m) + j(l + t2(m ») + j(l + t2(m »), 1:c m:C j2

=1-(I-llm)ln(m-l+j(l+(m- 1f»

- (Ilm)(j2 +In(j2+ I»+j(1 + (m-I)2)lm, j2:cm:C2,

where t(m) = (1- m J(2 - m2»/(m2- 1).

Proof Similar to the previous theorem. In this case 14 , Is, and hare
used and are substituted from Lemma 4.
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FIG. 4. Variation of average absolute (normalized) error A(m) with m. Note that A(m)

minimizes for m = .oo1סס1.4

R(m), surprisingly, minimizes for m = 1.400001, i.e., at the minimum
point of A(m). Minimum relative error is found to be 0.021651 ~ 2.2%. The
nature of R(m) has been illustrated in Fig. 5. Also R( 1) = 0.295587,
R(J2) = 0.024047, and R(2) = 0.118627.

Though asymptotic analysis provides the necessary trend of the error, it
is also interesting to observe the actual errors for some finite values of M
using the actual octagonal distance d(B) in place of dm • In this case the
average errors are computed in the digital domain as follows. For simple
B with m = f(p )/p,

Ao(m)=C~o X2~0 le«Xl'X2))-d«(Xl'X2);B)I/'1~0 x#o l)jM
= (2/(M(M + I)(M + 2)))

M XI

X I I le«(x 1,x2))-d«X 1,X2);B)1 and
Xl =0 X2=O

Ro(m) = (2/«M + 1)(M + 2)))

M XI

X I I 11-d«(X 1 ,X2);B)/e«X Il X2))I.
x, =0 X2= 0
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FIG. 5. Variation of average relative error R(m) with m. Note that R(m) minimizes for
m = .oo1סס1.4

We have tabulated AD(m) and RD(m) for M=4, 16,64,256, and 00 in
Tables I and II, respectively, for all simple B's having length up to 11 and
having distinct mB=f(p)/p. So B= {l, 2,1, 2} has been omitted in
preference to B = {I, 2} and so on. Note that such B's can be easily
generated as (f(p)/p-l)= (m B-l) forms a Farey series [3, p. 157] of
order 11. Now the validity of the above asymptotic analysis can be derived
from these tables where errors approach the limiting value with the
increase of M.

5. BEST SIMPLE DISTANCES

Equipped with the results of various error analyses we are now ready to
select the best simple distances to be used in practical applications. From
Tables I and II, we form~late Table III, where for every p = 1, 2, ..., 11, the
simple d(B) having minimum average error has been shown. Since A(m)
and R(m) have very similar natures, a d(B) which lowers A(m) also lowers
R(m) and vice versa. In addition the direct errors have been calculated in
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TABLE I

Average Absolute (Normalized) Errors AD(m) for Finite Pictures

f(p)/p B M=4 M=16 M=64 M=256 M=OCJ

1/ 1 = l.()00 {l } 0.2210 0.2311 0.2339 0.2346 0.2348
12/11 = 1.091 {l, 1, 1, 1, 1, 1, 1, 1, 1, 1,2} 0.2210 0.1778 0.1603 0.1557 0.1542
11/10 = 1.100 {I, 1, 1, 1, 1, 1, 1, 1, 1,2} 0.2210 0.1713 0.1532 0.1487 0.1472
10/9= 1.111 {I, 1, 1, 1, 1, 1, 1, 1, 2} 0.2210 0.1624 0.1448 0.1403 0.1388
9/8= 1.125 {I, 1, 1, 1, 1, 1, 1, 2} 0.2210 0.1515 0.1346 0.1303 0.1288
8/ 7 = 1.143 {l, 1, 1, 1, 1, 1, 2} 0.2043 0.1387 0.1221 0.1179 0.1165
7/ 6 = 1.167 {I, 1, 1, 1, 1,2} 0.1876 0.1227 0.1065 0.1024 0.1011

13/11 = 1.182 {l, 1, 1, 1, 1,2,1,1,1,1, 2} 0.1877 0.1151 0.0975 0.0933 0.0919
6/5= 1.200 {I, 1, 1, 1, 2} 0.1543 0.1015 0.0864 0.0827 0.0814

11/ 9 = 1.222 {l, 1, 1, 1,2, 1, 1, 1,2} 0.1543 0.0913 0.0747 0.0709 0.0695
5/4= 1.250 {l, 1, 1, 2} 0.1251 0.0742 0.0603 0.0571 0.0561

14/11 = 1.273 {l, 1, 1,2, 1, 1, 1,2, 1, 1,2} 0.1251 0.0664 0.0508 0.0473 0.0462
9/ 7 = 1.286 {I, 1, 1, 2, 1, 1,2} 0.1251 0.0597 0.0452 0.0421 0.0411

13/10 = 1.300 {I, 1, 1,2, 1, 1,2, 1, 1,2} 0.1251 0.0540 0.0399 0.0368 0.0359
4/ 3 = 1.333 {I, 1, 2} 0.0805 0.0379 0.0282 0.0262 0.0256

15/11 = 1.364 {l, 1,2, 1, 1,2, 1, 1,2, 1,2} 0.0805 0.0318 0.0211 0.0194 0.0190
11/ 8 = 1.375 {l, 1,2, 1, 1,2, 1,2} 0.0805 0.0284 0.0189 0.0176 0.0173
7/ 5 = 1.400 {I, 1,2,1, 2} 0.0638 0.0219 0.0159 0.0158 0.0160

10/7= 1.429 {I, 1,2,1,2,1, 2} 0.0638 0.0191 0.0185 0.0212 0.0223
13/ 9 = 1.444 {l, 1,2, 1,2, 1,2, 1,2} 0.0638 0.0200 0.0231 0.0262 0.0273
16/11 = 1.455 {l, 1,2,1,2,1,2,1,2,1, 2} 0.0638 0.Q205 0.0261 0.0292 0.0303
3/ 2 = 1.500 {1, 2} 0.0455 0.0327 0.0400 0.0422 0.0430

17/11 = 1.545 {l, 2,1,2,1,2,1,2,1,2, 2} 0.0455 0.0401 0.0503 0.0530 0.0540
14/ 9 = 1.556 {l, 2, 1,2, 1,2, 1,2,2} 0.0455 0.0429 0.0527 0.0553 0.0562
11/ 7 = 1.571 {l, 2, 1, 2, 1, 2, 2} 0.0455 0.0468 0.0562 0.0587 0.0596
8/5= 1.600 {I, 2,1,2, 2} 0.0508 0.0537 0.0622 0.0645 0.0652

13/8= 1.625 {I, 2,1,2,2,1,2, 2} 0.0507 0.0582 0.0667 0.0690 0.0697
18/11 = 1.636 {I, 2, 1,2,2, 1,2,2, 1,2,2} 0.0507 0.0599 0.0687 0.0709 0.0716
5/ 3 = 1.667 {l, 2, 2} 0.0543 0.0673 0.0741 0.0758 0.0763

17/10= 1.700 {l, 2, 2,1,2,2,1,2,2, 2} 0.0543 0.0710 0.0786 0.0803 0.0809
12/ 7 = 1.714 {I, 2, 2, 1,2,2,2} 0.0543 0.0738 0.0805 0.0821 0.0827
19/11 = 1.727 {I, 2, 2, 1,2,2,2, 1,2,2,2} 0.0543 0.0751 0.0821 0.0837 0.0842
7/4= 1.750{1, 2, 2, 2} 0.0709 0.0795 0.0850 0.0862 0.0866

16/9= 1.778 {I, 2, 2, 2,1,2,2,2, 2} 0.0709 0.0824 0.0877 0.0889 0.0893
9/ 5 = 1.800 {I, 2, 2, 2, 2} 0.0709 0.0853 0.0899 0.0908 0.0911

20/11 = 1.818 {l, 2, 2, 2, 2, 1,2,2,2,2,2} 0.0709 0.0869 0.0913 0.0922 0.0925
11/ 6 = 1.833 {l, 2, 2, 2, 2, 2} 0.0709 0.0885 0.0925 0.0933 0.0935
13/ 7 = 1.857 {l, 2, 2, 2, 2, 2, 2} 0.0709 0.0906 0.0941 0.0947 0.0949
15/ 8 = 1.875 {I, 2, 2, 2, 2, 2, 2, 2, } 0.0709 0.0926 0.0952 0.0956 0.0958
17/ 9 = 1.889 {1, 2, 2, 2, 2, 2, 2, 2, 2, } 0.0709 0.0934 0.0959 0.0962 0.0964
19/10 = 1.900 {I, 2, 2, 2, 2, 2, 2, 2, 2, 2} 0.0709 0.0938 0.0964 0.0967 0.0968
21/11 = 1.909 {I, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} 0.0709 0.0943 0.0969 0.0971 0.0971

2/ 1 = 2.000 {2 } 0.1124 0.1022 0.0995 0.0988 0.0985

Note. M -+ OCJ shows the asymptotic value derived in Theorem 6.
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TABLE II

Average Relative Errors Ro(m) for Finite Pictures

f(p)/p B M=4 M=16 M=64 M=256 M=OCJ

1/ 1 = 1.000 {t, 2} 0.2403 0.2825 0.2926 0.2949 0.2956
12/11 = 1.091 {I, 1, 1, 1, 1, 1, 1, 1, 1, 1,2} 0.2403 0.2246 0.2013 0.1941 0.1917
11/10 = 1.100 {I, 1, 1, 1, 1, 1, 1, 1, 1,2} 0.2403 0.2165 0.1923 0.1851 0.1827
10/ 9 = 1.111 {t, 1, 1, 1, 1, 1, 1, 1, 2} 0.2403 0.2056 0.1815 0.1745 0.1721
9/ 8 = 1.125 {t, 1, 1, 1, 1, I, I, 2} 0.2403 0.1926 0.1686 0.1616 0.1593
8/7= 1.143 {I, 1, I, I, 1, 1, 2} 0.2285 0.1765 0.1527 0.1459 0.1437
7/6= 1.167 {t, 1, 1, 1, I, 2} 0.2152 0.1569 0.1329 0.1263 0.1242

13/11 = 1.182 {I, I, I, 1, 1,2,1,1, I, I, 2} 0.2152 0.1484 0.1219 0.1149 0.1126
6/ 5 = 1.200 {I, 1, 1, 1, 2} 0.1846 0.1304 0.1076 0.1015 0.0995

11/ 9 = 1.222 {I, I, 1, 1,2, I, I, 1,2} 0.1846 0.1188 0.0933 0.0868 0.0847
5/4= 1.250 {t, I, 1, 2} 0.1539 0.0971 0.0751 0.0698 0.0681

14/11 = 1.273 {I, I, 1,2, 1, 1, 1,2, I, 1,2} 0.1539 0.0886 0.0637 0.0579 0.0561
9/ 7= 1.286 {I, 1, 1,2, 1, 1,2} 0.1539 0.0805 0.0569 0.0515 0.0500

13/10 = 1.300 {I, 1, 1,2, I, 1,2, I, 1,2} 0.1539 0.0743 0.0504 0.0452 0.0437
4/ 3 = 1.333 {t, 1, 2,} 0.1043 0.0522 0.0359 0.0326 0.0317

15/11 = 1.364 {I, 1,2, 1, 1,2, I, 1,2, 1,2} 0.1043 0.0460 0.0280 0.0250 0.0243
11/ 8 = 1.375 {t, 1,2, 1, 1,2, 1,2} 0.1043 0.0420 0.0255 0.0230 0.0226
7/ 5=1.4oo{t, 1,2, 1,2} 0.0910 0.0343 0.0221 0.0214 0.0217

10/ 7= 1.429 {I, 1,2,1,2,1, 2} 0.0910 0.0311 0.0251 0.0281 0.0297
13/ 9 = 1.444 {t, 1,2, 1,2, 1,2, 1,2} 0.0910 0.0319 0.0302 0.0340 0.0357
16/11 = 1.455 {t, 1,2, 1,2,1,2, 1,2,1, 2} 0.0910 0.0325 0.0336 0.0377 0.0394
3/ 2 = 1.500 {t, 2} 0.0663 0.0430 0.0501 0.0533 0.0546

17/11 = 1.545 {t, 2,1,2, 1,2, 1,2,1,2, 2} 0.0663 0.0503 0.0619 0.0661 0.0676
14/ 9 = 1.556 {t, 2, 1,2, 1,2, 1,2,2} 0.0663 0.0534 0.0647 0.0688 0.0703
11/7= 1.571 {I, 2, 1,2,1,2, 2} 0.0663 0.0578 0.0689 0.0728 0.0742
8/ 5 = 1.600 {t, 2, 1,2, 2} 0.0700 0.0655 0.0760 0.0765 0.0808

13/8= 1.625 {I, 2,1,2,2,1,2, 2} 0.0700 0.0703 0.0813 0.0848 0.0860
18/11 = 1.636 {I, 2, 1,2,2,1,2,2, I, 2, 2} 0.0700 0.0721 0.0835 0.0871 0.0883
5/ 3 = 1.667 {t, 2, 2} 0.0739 0.0808 0.0900 0.0928 0.0937

17/10= 1.700 {t, 2, 2, 1,2,2,1,2,2, 2} 0.0739 0.0844 0.0950 0.0980 0.0989
12/ 7 = 1.714 {t, 2, 2, 1,2,2,2} 0.0739 0.0878 0.0973 0.1001 0.1010
19/11 = 1.727 {t, 2, 2, 1,2,2,2, 1,2,2,2} 0.0739 0.0890 0.0991 0.1018 0.1027
7/4= 1.750 {I, 2, 2, 2} 0.0872 0.0946 0.1025 0.1047 0.1055

16/ 9 = 1.778 {t, 2, 2, 2, 1,2,2,2,2} 0.0872 0.0974 0.1056 0.1078 0.1084
9/ 5 = 1.800 {I, 2, 2, 2, 2} 0.0872 0.1009 0.1081 0.1099 0.1105

20/11 = 1.818 {t, 2, 2, 2, 2,1,2,2,2,2, 2} 0.0872 0.1024 0.1097 0.1115 0.1120
11/ 6 = 1.833 {I, 2, 2, 2, 2, 2} 0.0872 0.1044 0.1111 0.1127 0.1131
13/ 7 = 1.857 {t, 2, 2, 2, 2, 2, 2} 0.0872 0.1066 0.1129 0.1143 0.1147
15/ 8 = 1.875 {I, 2, 2, 2, 2, 2, 2, 2} 0.0872 0.1085 0.1141 0.1153 0.1156
17/ 9 = 1.889 {I, 2, 2, 2, 2, 2, 2, 2, 2} 0.0872 0.1093 0.1150 0.1160 0.1163
19/10 = 1.900 {t, 2, 2, 2, 2, 2, 2, 2, 2, 2} 0.0872 0.1098 0.1156 0.1165 0.1167
21/11 = 1.909 {t, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} 0.0872 0.1103 0.1160 0.1169 0.1171

2/ 1 = 2.000 {2 } 0.1221 0.1214 0.1195 0.1188 0.1186

Note. M -+ OCJ is from Theorem 7.
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TABLE III

Selection of Best Simple Octagonal Distance

pf(p) f(p)jp B A(m) R(m) cx(m) a(m)

1 2 OOסס.2 {2} 0.09853 0.11863 0.41421 0.29289

2 3 1.5000 {I, 2} 0.04297 0.05456 0.11803 0.10557

3 4 1.3333 {I, 1,2} 0.02562 0.03167 0.08579 0.06066

4 6 1.5000 {t, 2,1, 2} 0.04297 0.05456 0.11803 0.10557

5 7 1.4000 {1,1,2,1,2} 0.01595 0.02165 0.07703 0.07152

6 8 1.3333 {I, 1,2, 1, 1, 2} 0.02562 0.03167 0.08579 0.06066

7 10 1.4286 {t, I, 2,1,2, I, 2} 0.02234 0.02974 0.08797 0.08086

8 11 1.3750 {I,I, 2,1,1,2,1, 2} 0.01734 0.02260 0.06800 0.06367

9 12 1.3333 {I, 1, 2, 1, 1, 2, 1, 1, 2} 0.02562 0.03167 0.08579 0.06066

10 14 1.4000 {t, 1,2,1,2,1,1,2, I, 2} 0.01595 0.02165 0.07703 0.07152

11 15 1.3636 {t, 1,2, I, 1,2, I, 1,2, I, 2} 0.01899 0.02430 0.06406 0.06021

Table III to give some idea about the other kinds of errors. From Table III
we make the following recommendations:

p= 1: B= {2} with A(m)=9.9% and R(m)= 11.9%.

p=2: B= {t, 2} with A(m)==4.3% and R(m)=5.5%.

p = 3: B== {t, 1, 2} with A(m) == 2.6% and R(m) == 3.2%.

p=4: B== {t, 2,1, 2} is no different from B== {t, 2} and has a worse
performance than B = {1, 1,2}. So no B with p == 4 is advised.

p== 5: B== {1, 1,2,1, 2} with A(m)= 1.6% and R(m) == 2.2%. In this
case mB == f(p )/p == 7/5 == 1.4 which is extremely close to the minima point
of A(m) and R(m) (at m == 1.400001). Thus this d(B) has an exellent perfor
mance. And from mopt == 1.400001, we can easily foresee that increasing p to
a reasonable extent would not see any considerable improvement in the
performance. Moreover, larger p's offer additional processing time for the
computation of the distance transformation and hence we always try to
restrict p to small values. Moreover, this B also keeps the direct errors
fairly small. In particular, rx(m == 7/5) == 7.70% (minimum possible is
6.13%) and a(m==7/5)==7.l5% (minimum possible is 5.38%).

So we recommend the use of {2}, {t, 2}, {t, 1, 2}, and {1, 1,2,1, 2} for
more and more accurate results and we do not recommend any longer B at
all. It may be noted here from Table III that in the selection of the best
metric we have given more importance to average errors than to direct
errors. This is truly justified since in general large aberrations at a limited
number of isolated points may be acceptable if the majority of the points
in a domain get closely approximated distance values.

640/68/2-5
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6. CONCLUSIONS

Analyzing the class of octagonal distances in 2-D digital pictures we have
identified best approximate distances which are simple in functional form,
metric in nature, and easy to compute. A generalization of these results in
n dimensions using hyperoctagonal distances [1] remains an interesting
open problem.
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